The duality of wetlands in drylands: deluge and drought

Thursday 3rd August 2017

The 2nd Wetlands in Drylands (WiDs) meeting took place at Macquarie University in Sydney, Australia, between 24-26th July 2017.  Organised by Tim Ralph, the meeting involved presentations and breakout group discussions, and was followed by a four-day excursion to the Macquarie Marshes in inland central New South Wales.  Following on from the inaugural WiDs meeting held near Parys, South Africa in November 2014, a meeting that led to formation to formation of the Wetlands in Drylands Research Network (see, this post is an attempt to cast a perspective over the activities.  The activities provided an opportunity not only to assess progress in wetlands in drylands research since the Parys meeting, but also to place these activities against the backdrop of more than two decades of research and management in the Macquarie Marshes in particular.

1 WIDs Day 1 intro

Tim Ralph giving the opening address at the WiDs 2017 meeting at Macquarie University (Photo: Will Farebrother)

A day-by-day outline of activities at Macquarie University is provided elsewhere (see  Stepping back a little, it is noteworthy that compared to the Parys meeting, which was specifically for 16 UK and South African wetland researchers alone (this was a stipulation of the catalysing funding scheme), the Macquarie meeting was larger (~50 attendees) and more diverse.  A common lament at the Parys meeting was the absence of involvement from other people whose social and professional lives revolve around wetlands in drylands (e.g. representatives of local community groups, subsistence and commercial farmers, wetland managers and policy makers).  Most wetlands in drylands are living and working landscapes, such that the relatively new term ‘social-ecological system’ can be readily applied.  While blue-skies wetland research remains important, in many instances this can benefit from, and dovetail with, additional perspectives.  But thanks to Tim’s sterling organisational efforts, the Macquarie meeting and the associated excursion was blessed with inputs not only from wetland researchers spread across four continents but also from additional constituencies: wetland managers and policy makers, wetland landholders, and – importantly – representatives of the Traditional Owners of the Macquarie Marshes (the Aboriginal Wayilwan nation).  As befitted the meeting theme of ‘Dynamic Landscapes’, specialist sessions focused on hydrogeomorphological, biogeochemical and ecological dynamics, and the resilience and sensitivity of wetlands in drylands, but later sessions were set aside to consider the interactions between science and management, and indigenous knowledge and management.

As a consequence of this diverse involvement and structure, discussions following presentations and in the breakout groups were considerably enriched, with particular attention focusing on how best to build and maintain strong relationships between scientists, managers and other stakeholders to address the many challenges facing wetlands in drylands.  What are the main barriers to, and opportunities for, communication and sharing of wetland knowledge and insights?  How best can wetland researchers translate findings into forms that can be assimilated by wetland managers?  To what extent should management concerns help to shape wetland research priorities?  Can environmental water flow releases from reservoirs work in synergy with ‘cultural flows’ to enable maintenance of local customs associated with water (e.g. fishing)?  And how can cultural perspectives on wetlands – oral histories and the like – be dovetailed with scientific perspectives?

The excursion – dubbed the ‘Macquarie Marshes Research Outreach Event’ – provided an opportunity to continue such discussions in a specific field setting.  This is one of Australia’s iconic wetlands in drylands, known especially for its diverse aquatic and semi-aquatic habitats that occur amidst the otherwise dusty, semi-arid plains of inland New South Wales.  Internationally, these wetlands are best known for their periodic profusion of waterbird populations, which in large part led to their 1986 listing as a Ramsar Wetland of International Importance (  Fed largely by seasonal rainfall gathered in its southern headwaters, historically the Macquarie River flowed freely northwest and north past towns such as Wellington, Dubbo and Warren, eventually disgorging its water and sediment amongst a confusing tangle of active and abandoned channels, marshlands, swamplands, floodplains, woodlands and lagoons.  In particularly wet years, the extent of flood inundation could expand to around 3000 km2 (300 000 ha) – an area roughly fifty-five times the size of Sydney Harbour or 1% of the total area of the United Kingdom – only to shrink back to much smaller areas of more-or-less permanently wet, ‘core wetlands’ during drier years.  Such a wetting-and-drying dynamic is the natural norm in inland Australia’s highly variable climate, and is associated with a well-adapted boom-and-bust ecology.  The local Aboriginal peoples would have known these rhythms well, adapting their cultural practices accordingly.  But European explorers and colonists took far longer to appreciate them.  In 1818, John Oxley arrived at the edge of the marshes in flood and turned around, concluding that he had arrived at an inland sea.  A decade later, Charles Sturt came during a drought and found largely dry floodplains, albeit ones dotted with small waterbodies, concluding instead that only in very heavy rains could the marshes and adjacent lands be inundated.  Even with the benefit of nearly 200 years of collective hindsight, fleeting visits still colour many people’s perceptions of the value of wetlands in drylands.  The marshes offer a very different personal experience in a wet year compared to a dry year, but both are needed for a fuller comprehension of the system’s workings.

2 middle Macquarie River

Winter low flows in the middle Macquarie River between Dubbo and Warren (Photo: Stephen Tooth)

3 Marshes wet & dry 2008-2010

The southern part of the Macquarie Marshes Nature Reserve in times of drought (late September 2008) and flood (late November 2010) (Photos: Tim Ralph)

And like many other wetlands in drylands around the globe, the absence of this longer-term perspective has been partly culpable for a steady decline in the health of the Macquarie Marshes, whether this be measured in terms of tree deaths, reduced diversity of vegetation and fish communities, or declining waterbird numbers.  Upstream dam construction and associated flow regulation, urban and agricultural flow extractions, and creeping encroachment from irrigated lands have all taken their toll on the marshes.  To this toxic mix, add complications from river and floodplain engineering schemes, marsh-dissecting roadworks, and greater flow variability resulting from climate change, and their declining health should come as no surprise.  In short, apart from a few areas of the marshes where inundation is now more-or-less permanent (and somewhat ironically can result in tree deaths and adverse soil geochemical changes), in many other parts, flooding events are now less frequent and less extensive, while desiccation events are becoming more frequent and more severe.

4b swamp stomp compiled

Swamp stomping in Buckiinguy Swamp (Photos: Stephen Tooth)

4a Willancorah swamp

Willancorah Swamp in the southern marshes (Photo: Stephen Tooth)

Roughly 90% of the Macquarie Marshes is now in private ownership, with the remaining 10% in protected areas, most notably the Ramsar-listed Macquarie Marshes Nature Reserve, but even these sorts of designations have not provided immunity from the overall health decline.  The two main portions of the reserve (southern and northern) are not accessible to local people or visitors from farther afield, so many of the deleterious changes that have taken place within the southern portion especially – desiccation, tree deaths, channel erosion, and so forth – have gone largely unnoticed.  In itself, this lack of public awareness is part of the problem.  In a 1992 commentary in the National Parks Journal, Bill Johnson (a former ranger with the NSW National Parks and Wildlife Service) argued that that while there was a need to halt many of the processes contributing to their decline and to begin restoration, the long-term viability of the Marshes is “totally dependent upon the involvement of the wider community in the management of the wetlands and the Macquarie River”.  An Australian Geographic article from March 1996 provided a snapshot of conditions in the marshes, highlighting the rich birdlife in particular, but not shying away from reporting some of the negative ecological changes, including tree deaths, waterbird declines, and the spread of invasive species such as the European carp and feral pigs.  It also sampled a wide range of local community views on the management of the marshes, including a quote from a now-departed local resident: “If people can’t visit the marshes, they won’t care about them”.  In this respect too, personal experience is vital for influencing perceptions of the value of wetlands in drylands.

5 dry marshes nature reserve

The entrance to the dominantly dry southern portion of the Nature Reserve (Photo: Stephen Tooth)

5b kangaroos

Mobs of roos within the Nature Reserve (Photo: Stephen Tooth)

Johnson’s commentary and the Australian Geographic article both focused on the key issue facing the marshes, namely the diverse views regarding the provision of water for urban, agricultural, environmental, and cultural purposes.  In a 1998 article in the Australian Geographer, Philippa Brock (then-time member of the Macquarie Marshes Catchment Committee) provided an overview of the declining physical status of the marshes and the evermore complex water allocation and distribution framework that was trying to balance the competing demands.  She highlighted the need for scientists and managers to work together to develop expertise in addressing natural and artificial changes in the marshes, concluding that the best that we could hope to achieve was: “… management of this unique ecosystem in a manner as close as possible to a ‘natural state’.  In an already regulated river system … this may require some degree of intervention and ‘active management’.”

These articles were published during the 1990s when La Niña conditions were still generating moderate rainfall and flooding.  In retrospect, this decade might be referred to as the last heyday of the marshes.  Ecological health worsened dramatically during the ‘millennium drought’ (c. 2001-2010), but has improved slightly in recent years, as a new La Niña phase has led to the return of moderate flows.  Intense competition for water has remained, however, and the policies and practices for water allocation and distribution have undergone further evolution.  So two decades or more later, where do we stand against the views and opinions expressed by an earlier generation of marshes managers and residents?  Has any progress been made against the calls for greater community involvement, and for closer working between scientists and managers?  Has scientific research provide any traction with the issues of negative ecological change?  Have channel and floodplain restoration efforts succeeded or failed?  Are there improved policies to balance the competing demands for water?  And how have local community perspectives fared within the negotiating rooms?

The excursion to the Marshes provided an opportunity for myself and others to ponder these sorts of issues.  And it’s mixed news.  Thanks especially to the work of Tim Ralph, his academic colleagues and students, our knowledge of the geomorphology, sedimentology, and environmental history of the Marshes has improved considerably.  Along with important contributions from other research groups, the links between landforms, earth surface processes, and ecological functioning in the marshes are now much better known, albeit still incomplete.  There is, for instance, much greater cognisance of the intrinsic dynamism of these ‘wandering wetlands’ and how lateral channel shifts, erosion and sedimentation can lead naturally to changes in wetland location and extent, regardless of conservation boundaries (  Suggestions that the degraded and drying southern portion of the Nature Reserve should be abandoned in favour of focusing efforts on the wetter northern portion can be rebuffed with the argument that a longer term perspective is needed: wait for the next lateral channel shift, keep patient during the drought, and wetter conditions will likely return.

6a chewing the fat 1

Chewing the fat at Willie Retreat (Photo: Stephen Tooth)

Some of these insights have been implemented in management policies and practices.  Some attempts at restoration of parts of the marshes have failed, even threatening the Ramsar status of the Nature Reserve (see, but lessons have been learned and are being incorporated into management practices (e.g. improving the design of channel-spanning weirs).  Some private landowners are fully on board with attempts to better understanding the landscapes and ecosystems of the marshes, and readily facilitate scientific research efforts.  While the Nature Reserve is still not publically accessible (a decision that seems to be based mainly on attempts to exclude unwelcome visitors such as illegal pig hunters), local community (including Wayilwan) perspectives are now given greater prominence in round-table discussions about the management plans for the reserve and the marshes more widely.

6b chewing the fat 2

Discussing the long history of Aboriginal occupation and use of the marshes.  A degraded mound (lower right) provides evidence of a ceremonial site alongside the old Macquarie River (Photo: Stephen Tooth)

Progress on other issues remains unclear, at least to me.  In a short visit of only two full days, it was impossible for me to get my head around the intricacies of the current marshes water allocation and distribution system, let alone its long and complex history.  Each year, many tens or hundreds of thousands of megalitres of water are released from the Burrendong Dam, but this is divided between environmental flows, irrigation flows, by pass flows and so on …. it’s a complex terminology with complex definitions that is coupled with complex demands competing in a complex social web.  All that is best left for others to elaborate on (see  Similarly, local issues of environmental management and social justice can’t be debated and resolved in a few quick conversations: for instance, just when do we intervene – or not intervene – in natural process such as channel abandonment and flow diversion, and how do we compensate those downstream users who may be deprived of water, or inconvenienced by changing flood patterns?  But the main point is that rarely can science and management be divorced from social context and consequence.

6c chewing the fat 3

Debating the options for channel and floodplain wetland restoration in the southern portion of the Nature Reserve (Photo: Stephen Tooth)

Even if answers can’t be provided immediately, approaches to a search for solutions can be outlined, at least in theory: namely, the need to facilitate ongoing communication, dialogue, and exchange of ideas between different scientists, managers, local community groups, and other stakeholders.  There is no simple recipe for doing so, but discussions at the meeting and on the excursion provided anecdotes and case studies to highlight at least some best practice principles.  Building trusting relationships by taking the time to listen to people’s views, engaging with environmental education projects in local communities, and organising open field visits such as the Macquarie Marshes Research Outreach Event …. none of these are magic bullets, but they can help lay the foundations for moving forward.  And in the Macquarie Marshes, many of the foundations are there already, not least because there seems to be sufficient shared concern about the future of the marshes for people to be open to ongoing communication.

Maintaining and building on these foundations is a constant challenge.  As discussions in the field, around the campfire, and on the bus home unfolded, it struck me that people within living and working wetland social-ecological systems enter and depart the scene, much like many of the waterbirds come and go with floods and droughts.  Like stately River Red Gums that line the Macquarie River banks, some individuals, families, social groupings and institutions provide continuity across the decades, persisting through cycles of flood and drought and withstanding the changing water allocation and environmental management frameworks.  But like Bill Johnson and others that frequented the Macquarie Marshes in the 1980s and 1990s, many move on or pass away.  Other people take their place, but with each entry and departure, knowledge and wisdom has to be re-learned and trusting, working and social relationships have to be rebuilt.

Of course, such issues are not unique to the Macquarie Marshes.  Institutional policies and practices can provide some sort of inherited memory and learning to enable ongoing progress, regardless of individual involvements.  In environmental management circles, ‘adaptive management’ is now the mantra.  Adaptive management practices acknowledge that despite uncertainty, decisions must be made and actions implemented, but emphasise learning from the outcomes to inform future decision making.  The Macquarie Marshes has its own adaptive management plan (written by Bill Johnson in a new role – see, something that may well be essential in managing for a future that seems to be getting just a little more uncertain with each passing year.  Let’s hope that in two decades or more, a retrospective similar to the one attempted here will provide positive rather than negative commentary on the state of the Macquarie Marshes social-ecological system.


Footnote: I gratefully acknowledge sponsorship from the NSW Office of Environment and Heritage (OEH) and Macquarie University for the Macquarie Marshes Research Outreach Event.  I also thank OEH staff, local landholders and representatives of the local community for their support and participation.  I thank Tim Ralph in particular for additional discussions and suggestions.  While informed by discussions on the excursion, the views expressed in this post are of course my own.

A glossary for the Anthropocene?

Wednesday 9th March 2016

New Scientist recently ran an interesting competition: can we help shape the linguistic direction of the Anthropocene? In the spirit of ‘Landmarks’, a book of terms for natural phenemona, Robert Macfarlane had pondered the words that might belong to this proposed new geological time interval ( What new words will we need to describe the planet in the Anthropocene, and which words will die?

Landmarks coverMacfarlane made some preliminary suggestions for a ‘desecration phrasebook’ (e.g. ‘trash vortices’ to describe the plastic garbage patches that swirl in ocean gyres …. ‘plastic soup’ is another possibility – see and pondered whether we yet have words to describe the rain that falls when a cloud is seeded with silver iodide or the glistening tidemarks that are left on coastlines by oil spills. Had I been aware of the mid-January deadline before it had passed, I might have entered the competition with some suggestions of my own.

But never mind. Given what I think are some rather uninspiring, even obscure, winning entries (‘saltscape’, ‘ghostroost’ and ‘langing’ – for definitions and some other entries, see, and on the back of new terms already circulating (e.g. ‘manthropocene’ –; ‘plastiglomerate’ –; ‘quoquake’ –, here are some other suggestions:

Anthroposcene – the hubbub of debate and activities that loosely revolves around the idea that humanity may have created a new geological time interval. [Nb. this is a term already adapted by at least two Facebook discussion groups – AnthropoScene and The Anthropos.Scene].

Anthroposense – intelligent, intelligible opinions that are expressed about the putative new geological time interval, whether one agrees with a formal definition of a term or not.

Nonthroposense – the polar opposite of the above.

Anthroposcenic – landscapes that have come to be viewed as picturesque (i.e. ‘scenic’) but that actually are in a far-from-natural, highly-altered state (e.g. the reservoirs in the Elan valley of mid Wales – see–january-2016.html). [Nb. in a recent RGS-IBG presentation, this term has been used in a rather different sense by David Matless to mean specific landscapes that have become emblematic of environmental transformation, such as where houses and graveyards have become undermined by coastal erosion, or where buildings and fields have been drowned by rising sea levels. To this alternative definition, one could also add the examples of buildings and fields drowned by rising waters behind human-constructed dam walls (e.g. Treweryn or Elan valleys in Wales), which in turn may have become Anthroposcenic in my sense of the term (certainly not to all, but to some)].

Anthroposore – a variant on ‘eyesore’, to reflect a more-or-less permanent sore, scar or wound on the Earth’s surface and geological record that has resulted from human activities (e.g. open cast mining, or land contamination and water pollution resulting from a legacy of mining activities).

Glasstic load – clastic sediment (e.g. sand- and gravel-sized material) that now contains a significant component of human-made glass (e.g. beach sediments in Aberystwyth – see

Plastic load – as above, but with plastic instead of glass forming a significant component of the clastic sediment.

The Plasticene – an alternative name for the Anthropocene, if the main signature of human impacts on the Earth’s geological record is taken to be a widespread plastic horizon in sediments formed from about AD 1950 onwards. [Nb. this is likely too similar to the already-existing, formal geological term ‘Pleistocene’ for this one to ever stick but, hey, we’re playing with words here].

The Capitalocene – a term that formally acknowledges the fact that the main driver of changes to the Earth’s environment – and potentially its geological record – has been the rampant growth of capitalism.

The Hollowscene – a play on the already-existing, formal geological term ‘Holocene’ to indicate the geological epoch preceding the Anthropocene (or Plasticene or Capitalocene), left forlorn and bereft of meaning and purpose (assuming a formal declaration of the Anthropocene).

And finally, what about some new collective nouns or verbs?

A refuse (a garbage? a detritus?) of gulls – the flocks of gulls that wheel, squeal and squabble at rubbish/trash dumps.

A gangsta of gulls – the menacing squads of gulls that have become too used to human handouts and now hover around and/or stalk people eating at popular attractions (e.g. seafronts).

To be gulled – a mugging by a gull (e.g. food stolen but no personal injury).

If anyone can add to or better these terms, I will be interested to receive suggestions, and might even feature some on a future blog.

Art and science collaborations in an age of change

Saturday 23rd January 2016

“The Anthropocene is up there with Copernicus’s heliocentricity or Darwin’s theory of evolution as one of the most profound shifts in worldview that has emerged from scientific endeavour” (J. Rockström in The Guardian, 17th Nov 2015)

This is a bold claim indeed. But what exactly is the profound shift that is referred to? The Anthropocene (from anthropo– for ‘human’ and –cene for ‘new’) is a term that has been proposed to signify the pervasive role of human activities – air pollution, species translocations, ploughing, mining, damming, dredging and construction, among many others – in influencing atmospheric, biological, and land surface changes. Some of these changes appear to be ‘dominating’, ‘overriding’ or ‘overwhelming’ natural forces, and to be sufficiently significant and permanent to have shaped Earth’s recent and potential future geological record. In short, have we now exited from the Holocene epoch (the present interglacial time division that started around 11 700 years ago) and entered a new geological interval, one defined by humanity?

The answer to this question, and thus as to whether the Anthropocene should be formally adopted as a new, uppermost time division in the geological column, is still subject to vigorous debate. Some geoscientists remain unconvinced of the justification, practicality or utility of a formal adoption (for an extreme viewpoint, see:  Amending the current subdivison of the geological timescale is a slow, contentious business, although a judgement from the International Commission on Stratigraphy is expected sometime in 2016. But beyond geological committee rooms, the answer – whether positive or negative – also has philosophical, ethical and moral dimensions, with implications for debate and practice across the natural sciences, social sciences, humanities and arts. For this reason, use of the term ‘Anthropocene’ in printed literature has seen an explosive rise (neatly charted by Google Books Ngram Viewer) since Crutzen and Stoermer first outlined its geological significance in Global Change Newsletter (v.41, 2000), a short but influential article that prepared the ground for subsequent debate and speculation.

Google Books NgramOne could in fact argue that the term has now gone viral, and perhaps represents just one more environmental buzzword in the zeitgeist; indeed, as geologists Autin and Holbrook ask, is the Anthropocene debate an issue of stratigraphy or pop culture? (see Certainly, the term has now travelled far beyond academia, and commonly features in the titles of popular books, newspaper and magazine articles, and exhibitions. For recent examples of the latter, see:

To provide our own perspective on this rising tide of Anthropocene-related debate, visual artist Julian Ruddock and I recently held a one-day symposium entitled ‘Strata: Art and Science Collaborations in the Anthropocene’ (Aberystwyth Arts Centre, January 15th 2016). The symposium was supported by the School of Art and the Department of Geography and Earth Sciences at Aberystwyth University, and by the Visualising Geomorphology Working Group of the British Society for Geomorphology ( Building on the successful ‘Future Climate Dialogues’ symposium (Aberystwyth Arts Centre, June 13th 2013 – see, over 25 oral, poster and film presentations focused on art-science collaborations around the nominal themes of ‘Earth’, ‘Water’ and ‘Ecosystems/Life’ (few submissions were received for an intended ‘Air’ session).

Pimm strata tweetEven prior to the call for contributions, it had become clear to us that the Anthropocene is already a term that means many different things to many different people. For some, it is a scientific term that carries a precise geological interpretation. For others, the Anthropocene also represents a political project (after all, what better way to make a statement about humanity’s environmental impacts than to name a geological time interval after ourselves?). Many use the term as a convenient catch-all for any form of human influence on the environment, including multifaceted technological and behavioural developments that may not have any significant or lasting geological impact. And for others still, the Anthropocene is less a scientific than an aesthetic event; something to be re-imagined as an affective rather than a scientific fact (see, for example, Davis and Turpin’s edited collection of writings about art in the Anthropocene).Davis & Turpin

Key questions that we hoped to address through ‘Strata’ included: i) how are the arts and sciences exploring these multiple meanings, either in isolation or in collaboration?; and ii) how can we encourage greater art-science collaborations, especially around the Anthropocene theme?

The full programme of events, along with the oral and poster presentation abstracts and the biographies of contributors, is hosted at [nb. the plan is to add some images and sound to the site, depending on contributors’ permissions]. Following an introduction by Julian and myself, Dan Harvey (one half of the respected Ackroyd & Harvey artistic partnership) provided the keynote address, drawing on personal examples from a long history of art-science collaborations in confronting environmental issues. One particular work (Ice Lens) has even graced the front cover of the prestigious science journal Nature Climate Change (March 2012).Nature Climate Change cover 2

Subsequent presentations – both during the day and in the linked evening session – mined a rich vein of art-science approaches, including those using different combinations of visual art, sculpture, film, poetry, writing, sound and music. Intervening discussion sessions and refreshment breaks provided opportunities for questions and debate. Despite the inevitable time constraints – and the unwanted interjections of a drunken interloper who nonetheless slurred one of the more concise but most scientifically-contentious questions of the day (‘Are we now in the Anthropocene?’) – overall the symposium appears to have been a qualified success.Whalley strata tweet 3

How so? The first of the key questions posed above was addressed more than satisfactorily. The range of presentations at ‘Strata’ provided ample demonstration of the plural meanings now attached to the Anthropocene. Many presentations – highly entertaining and informative though they were – made little or no reference to the term’s original geological meaning. Clearly, the Anthropocene has escaped far beyond these confines, and regardless of whether the term ultimately is formalised as signifying the latest interval of geological time, it is here to stay.

The second of the key questions proved less easy to address. Discussion both within and outside of the formal sessions highlighted some obvious difficulties in art-science collaborations. By and large, scientists want to communicate facts, figures, terms and concepts in ways that are as unambiguous and precise as possible. Established scientific conventions dictate how we should observe and describe the world; meaning (‘interpretation’) then follows. By and large, artists tend to see their role as introducing ambiguities and free thinking in their filtering and presentation of material. Rather than operating in a didactic mode, they commonly want to challenge convention; the beholder of the artwork is then tasked with searching for, perhaps even generating, meaning. Of course, such stereotypes can be challenged, and even highly contrasting worldviews are not necessarily mutually exclusive, but the task is to identify ways to identify and pursue shared agendas in order to produce work that is both scientifically meaningful and aesthetically challenging. Ackroyd & Harvey’s work – along with that of other contributors to the symposium – shows that it can be done. Discussions at ‘Strata’ touched on the importance of creativity, intuition and inspiration in art and science practice, and some practical strategies for encouraging interdisciplinary collaborations were outlined. Hopefully, the seeds of some good ideas have been sown in fresh furrows. For instance, could a follow-up meeting be organised as an art-science workshop, with short presentations being interspersed with breakout sessions to encourage blue-skies thinking and creative collaborations? Could fieldtrips be used to inspire creative collaborations? The evening contribution entitled ‘Argae: Writing the Anthropocene in the Welsh Uplands’ provided an example of the possibilities that could result from the latter; four writers and poets (some with science backgrounds) provided very different creative responses to a shared landscape experience, namely a day tour through the Elan valley in mid Wales, where a series of reservoirs, dams and HEP generators serve as highly visible (although likely not long-lasting) symbols of human manipulation of the hydrosphere. Similar tours – perhaps broadening out to incorporate film makers, visual artists and musicians alongside scientists – could pave the way for other creative responses to various human-impacted landscapes.Griffiths strata tweet 2Partway through the day, one contributor had reminded us all of a quote from Leonardo da Vinci (AD 1452 – 1519):

“Principles for the Development of a Complete Mind: Study the science of art. Study the art of science. Develop your senses – especially learn how to see. Realize that everything connects to everything else.”

As we approach the quincentenary of da Vinci’s death, we now have vastly more ways of sensing the world, some going far beyond direct human experience. Yet in the face of a tidal wave of environmental problems, many brought to greater prominence by the Anthropocene debate, we are still scrabbling for the best ways to see, especially the myriad interconnections. Symposia like ‘Strata’ provide glimpses of the possibilities but remind us that a full view has yet to emerge.

Frack to the Future?

Sunday 3rd May 2015

In an energy-hungry world, ‘extreme energy’ has been defined as “the process whereby energy extraction methods grow more intense over time, as easier to extract resources are depleted” (see Such methods include mountain top removal for coal, open cast mining for tar sands, hydraulic fracturing for shale gas, and deep water drilling for oil, and their wider deployment across the globe is proving to be highly contentious. And depending on perspective, the method of hydraulic fracturing – commonly shortened to ‘fracking’ – is turning out either to be the bête noir or the poster child of our growing energy crisis. In essence, fracking involves drilling vertically and horizontally into shale rocks at depth and then pumping a mixture of water, sand and chemicals at high pressure to fracture the rocks, enabling any trapped gases to flow into the borehole and then to the surface ( Over the last couple of decades, widespread fracking has enabled the USA to become one of the world’s leading gas producers, and large shale gas resources are known to exist globally, including in Canada, Argentina, China, and Western Europe. Potential shale gas resources are thought to underlie many parts of the UK, which raises the possibility of fracking operations becoming part of our energy landscape, sitting alongside coal-fired power stations, nuclear power stations, HEP reservoirs, and wind farms. Opponents of fracking fear the potential litany of local environmental impacts that may result, including ground and surface water pollution, soil contamination, induced seismicity, and noise. They also point out that shale gas is a fossil fuel, the exploitation of which will simply add to the seemingly inexorable rise of global atmospheric CO2 concentrations and so contribute further to regional and global climate change. Proponents see fracking as an important way to develop a more balanced energy portfolio that reduces dependence on foreign energy imports. They also argue that shale gas may serve as a ‘transition fuel’, gradually substituting for ‘dirtier’ forms of energy production (e.g. coal burning) and so may form one of the stepping stones necessary for attempts to de-carbonise our economy.

While the debate over fracking is commonly caricatured as being played out by two opposing lobbies – the vociferously anti ‘frackivists’ and the rabidly pro ‘hydrocarbon barons’ – the reality is not quite so binary. Many people (including myself) are genuinely interested in the middle ground and the vexing but key questions that lie therein. Can fracking be managed sustainably (economically, socially, environmentally)? Will fracking be a boon or a burden for ailing rural economies? Can fracking improve energy security and be part of a balanced energy supply? Without posing such questions and getting a firm handle on any available facts and figures, meaningful debate can’t take place.

A potential opportunity to examine these and other questions was provided by the public forum entitled “Fracking and the Imagination: Scraping the Barrel or Saving the Day?” that took place at Aberystwyth University Arts Centre on 23rd April 2015. I had a minor role in the organisation of the meeting, which was intended as a transdisciplinary forum that would bring together natural and social scientists, artists and environmental activists from across Wales and beyond. Such variety is essential, for fracking is a complex, multi-dimensional issue that can be examined from many different perspectives. At an early stage, I could see the possibility of the forum serving as a prism for splitting and dispersing the fracking issue into its constituent parts (‘wavelengths’), so enabling informed debate.

fracking tweet 1

My presentation opened the forum by briefly raising many of the above issues, while attempting to focus on the geological context, technologies and possible climatic and wider environmental consequences of fracking.

fracking tweet 2a

As a particular contribution to the ‘imagination’ theme, I tried to look forward in time and ponder the legacy that fracking might leave in the long-term geological record. Would a forensic geological examination of the future Earth reveal signs of the deep physical disturbances associated with fracking, alongside other forms of hydrocarbon extraction, mineral mining, groundwater exploitation and underground construction? Will fracking ‘scars’ be our enduring ‘trace fossils’, cutting across multiple geological strata to mark a putative Anthropocene time interval, in which human activities dominate over nature and influence the geological record? Do we care about this? Should we care about this?

fracking tweet 2b

How successful was the day? You can judge for yourselves by watching some of the presentations online:


Some of the tweets from the day have been ‘storified’ (, cherry-picked examples of which are embedded in this blog, and the twitter feed is ongoing (#imaginefracking). Other contributors to the forum will be posting their own blogs on the event, and these will provide additional retrospectives (e.g. and

I thought that the event was very successful: the open forum worked well as a means of debating vexing issues from a variety of perspectives in a non-confrontational atmosphere. Geological, environmental and social perspectives were all covered, including from academic, artistic, activist and political angles. Personally, I would have liked to have heard more about the economic arguments for fracking: other than from one audience member who played devil’s advocate by raising these arguments, this perspective was effectively absent from the forum. Can shale gas really help to reduce energy bills? Can fracking developments lead to long-term jobs creation? Can shale gas really act as a transition fuel? Such questions were left largely untouched.

As someone primarily interested in physical geography and geomorphology, the fracking theme clearly sits some distance outside my comfort zone, and preparing a balanced ‘scene setting’ opening talk had proved more of a challenge than anticipated. Afterwards, I was told that someone had described my talk as ‘factually correct and dispassionate’, so that’s a result as far as I am concerned. Or is it? On such important issues, should scientists like myself always be dispassionate, remaining rigidly impartial and free from personal feeling or emotion?

To retain credibility as a scientist and university educator, the answer is probably ‘yes’. But as a citizen interested in the evolving state of the world, perhaps the answer is ‘no’. For sure, one should stick to known facts and figures, but when these run out – and in the case of debates over fracking, this position seems to be reached quite quickly – surely one has the right to venture opinions and offer value judgements that may be influenced more by gut feeling and perhaps even raw emotion?

Balancing dispassion and passion is like walking a tightrope, but this is a tightrope that increasing numbers of scientists are being forced to tread. The climate change debate – of which fracking forms a part – is a prime example. Over the last 10-15 years, many climate scientists have become increasingly vocal in raising awareness of the environmental and societal consequences of climate change. Some have even eschewed their data crunching safety net to become strong advocates for drastic actions to reduce our fossil fuel addiction, and in the process have found themselves embroiled in fierce media and political battles with climate change denialists, sceptics, politicians and big business interests. Jim Hansen (, Michael Mann ( and the late Stephen Schneider ( are just three names that spring to mind. Any stumble on the tightrope can be injurious to one’s career and reputation. But surely some scientists have to engage in such activities, if only to bring some counterbalance in debates that would otherwise be populated with less-informed participants and ‘business as usual’ advocates.

fracking tweet 3

The nice thing about the “Fracking and the Imagination” forum was that there was the opportunity to show both dispassionate and passionate faces. My presentation tried to show the former, but by taking part in the afternoon panel discussion, I found myself venturing those opinions and value judgements. Is fracking akin to scraping the barrel or will it save the day? Despite the virtual absence of the economic arguments, it does seem that fracking and other extreme energies reflect extreme desperation: ‘sprinting in the wrong direction’ to quote another panellist (Damien Short). The amount of energy that needs to go into extracting the energy from unconventional resources reflects diminishing returns, and just like conventional gas, coal and oil, surely fracking and similar developments can only have a finite lifetime (a few decades)? Shouldn’t society reverse, turn 180 degrees and sprint the other way, throwing more efforts towards developing renewable energy resources? If we can put people on the Moon, control rovers on Mars, and land instruments on comets more than 6 billion kilometres miles away, surely we can improve the scales and efficiencies with which we extract energy from the Earth’s internal heat and its sunshine, wind, waves and tides? Of course, such renewables may also have environmental impacts. But my hunch is that the impacts will be far less widespread and far less enduring than a full rollout of fracking operations across the globe.

Against this backdrop, what should we make of Ceredigion County Council’s decision to become the first ‘frack free’ local authority in Wales? The vote on the motion (28th January 2015) wasn’t unanimous (13 for, 9 against, 15 abstentions). Regardless of the numbers, given that Ceredigion has no viable resources of shale gas (or indeed coal bed methane or shale oil), is this a meaningless gesture or symbolically important? The motion made clear that, if adopted, it would demonstrate the Council’s commitment to a cleaner energy future and set an example for the rest of Wales. And on a broader, global front, there are calls to go even further and pressurise companies and institutions to divest from oil, coal and gas companies, as exemplified most prominently by a group of Stanford University Professors ( The outgoing editor of The Guardian newspaper has urged more scientists to ‘speak up’ on such fossil-fuel divestment ( It remains to be seen just how many will be willing to walk that part of the tightrope.

While I was finishing this blog, it struck me that opposition to environmental developments – be it for energy or something else – is often characterised as NIMBYism (Not In My Backyard-ism). But in the case of Ceredigion County Council, as well as supporters of fossil-fuel divestment, surely it’s NIABYism (Not In Anyone’s Backyard-ism). It’s a horrible acronym. But my feeling is that this is the least of our concerns if the UK and other countries really do roll out large-scale fracking operations and we don’t wean ourselves off fossil fuels, conventional or unconventional.

So, frack to the future? Do we really understand all the potential environmental consequences of fracking? Is it really possible to know the legacy that fracking might leave in the long-term geological record? In both cases, the truthful answer is ‘probably not’. But just as we attempt to deal with the environmental hazards left by Victorian era lead, zinc, copper and coal mining – many of much surely could not have been foreseen at the time – will future generations have to grapple with the hazards of fracked landscapes and a CO2-enriched climate? Will those generations wish that they could jump into Doc Brown’s modified DeLorean and race back in time to intervene in our current energy policy decisions, so changing the course of future events?


A light dusting or something more thorough?

Thursday 5th March 2015

I’ve never really been a fan of The Daily Telegraph or The Sunday Telegraph newspapers. The right-leaning editorial biases and conservative views on many issues grate with me, and one particular contributor’s opinion pieces and blogs on climate change topics (let’s just call him J.D.) make me want to reach for a large bottle of whiskey with the same initials.

But credit where credit’s due. An online article in The Telegraph from 4 March 2015 has a fascinating short video clip that illustrates the transport of dust from the Sahara to the Amazon on the other side of the Atlantic Ocean:

A static screen shot captures the essence of the video, which is based on data collected by NASA’s Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite from 2007 through 2013.

The path of the dust clouds blown from the Sahara to the Amazon basin (highlighted in green) and other parts of South and Central America

The path of the dust clouds blown from the Sahara to the Amazon basin (highlighted in green) and other parts of South and Central America

The full set of findings have been published online by Yu and colleagues in Geophysical Research Letters (accepted article, DOI: 10.1002/2015GL063040) but the video and accompanying short article bring some of the key facts and figures more prominently into the public domain. About 182 million tonnes of dust is blown off the western edge of the Sahara each year. Some of this dust falls from, or is rained out of, the atmosphere into the Atlantic. But on average 132 million tonnes makes it to the eastern coast of South America, whereupon the Amazon receives its average yearly share of about 27.7 million tonnes. The Amazon dust contains about 22 thousands tonnes of phosphorous, an essential nutrient that acts as a fertilizer for the rainforests. Most of the phosphorous comes from the Bodélé Depression in Chad, where an ancient, now desiccated, lake bed is exposed to vigorous wind erosion. This amount of phosphorous is roughly the same amount that is washed away from the Amazon basin by rain and floods every year, suggesting that the African dust plays a key role in preventing phosphorus depletion from the Amazon over decades to centuries.

As The Telegraph article states, the findings ‘show how one of the planet’s driest places is helping sustain one of its most fertile’. There’s obviously much more to it than that, for as the last line of the article hints, the findings are ‘part of a bigger research effort to understand the role of dust in the environment and on local and global climate’. In more expansive, technical terms, dust is a key, but still poorly understood, component of global biogeochemical cycles and the climate system, including possible influences on hurricane generation and suppression. There’s also the debate about whether a future ‘greening of the Sahara’ would necessarily be a good thing. If the current global warming trend continues, then with warmer seas and more intense heating of the Sahara, there’s a chance that more and more rain will penetrate further and further into the heart of the Sahara, perhaps enabling the return of lush wetlands, rivers and lakes. Such features have characterized the Sahara many times in the past, most recently up until about 5-6 thousand years ago.

So why is this a bad thing? First, when the Sahara is green and wet, dust transport off North Africa and across the Atlantic is much more limited, so phosphorous shortages may limit the productivity of the Amazon. Second, there have been some suggestions that when the Sahara is better watered, the Amazon may become much drier. In this complex, teleconnected world, a Saharan expansion of wetlands, rivers and lakes might coincide with widespread desiccation and burning off the Amazon rainforest. This would have widespread implications not only for biodiversity but also for the oxidation and loss of substantial amount of organic carbon to the atmosphere. Along with the rampant human contributions of greenhouse gases to the atmosphere, this is something that the world can ill afford.

Plastics, plastics everywhere, breaking bit by bit

Saturday 10th January 2015

Here’s a really interesting story that is likely to keep on running: nautical-themed Lego pieces keep washing up on beaches in Cornwall and farther afield, nearly 18 years after the sinking of the Tokio Express container ship about 20 miles off Land’s End.  The losses included 62 containers, one of which was filled with nearly 5 million Lego pieces bound for New York.  The BBC News Magazine first covered the story back in July 2014:

An update has been published within the past few weeks, including a map of where the Lego pieces are being found (see image):

map of lego pieces

lego facebook page 2A Facebook page has even been set up to keep track of the finds (see image), some of which are likely related to the Tokio Express’s cargo, and others which may not be.  As yet, I have still to find any of the Lego pieces on Aberystwyth’s beaches but I’ll keep on looking …

This unplanned ‘experiment’ is akin to a controlled tracer exercise in geomorphology, whereby a collection of coloured pebbles are placed on a beach or in a river bed, and attempts are made to recover the pebbles at various intervals thereafter to see how far they have moved during tidal, wave or flood events. From this information, geomorphologists can learn much about the processes, patterns and rates of sediment movement in flowing water. Given that we can send manned missions to the Moon, control rovers on Mars, and even land instruments on comets more than 6 billion kilometres away (, you would think that we would know most of what we need to about these fundamental processes.  Not so.  The mechanics of sediment movement in flowing water is exceptionally complex – just think of those countless billions of sediment particles of all shapes and sizes jostling and being jostled within highly turbulent waters – and still defeats the attempts by some of the best brains to model or predict the phenomenon with any great degree of accuracy.  So even basic field experiments – planned or unplanned – still provide useful information.  As the BBC articles outline, in the case of the Lego, oceanographers and coastal geomorphologists will be able to learn much about the vagaries of oceans currents and tides, adding to our knowledge about the poorly-known watery 70% of our planet.

Although a uniquely quirky case study, the Lego story is also illustrative of the larger debate about plastic pollution in the world’s oceans.  Large areas of the oceans have become known as ‘garbage patches’, the most infamous being the huge Pacific Garbage Patch, located half way between Hawaii and California (  Were Samuel Taylor Coleridge’s ancient mariner and crew to be becalmed in this part of this ocean today, rather than complaining about a lack of drinking water, they may well have had reason to comment on all the shredded plastic bags, torn crisp packets, broken tupperware, bits of polysterene and numerous other plastic items swirling in the water column.

Regardless of whether ‘plastic soup’ is a better term than ‘garbage patch’, the problem is the same: large quantities of industrial (‘man-made’) materials are entering natural systems. Plastics, ceramics, glass, metals, bricks … the list of manufactured items goes on and on.  Ocean plastic pollution thus is illustrative of a wider debate still: namely the extent of the legacy that our industrial age will leave behind for future generations.  Some of these industrial materials will degrade over time, simply returning the compounds and elements to the Earth.  Others will be buried more or less intact in sediments on the ocean floor or along beaches.  Others will transform, perhaps fusing with natural materials to form new types of rock (e.g. so-called ‘plastiglomerate’ on Hawaiian beaches –  Others still will break down to smaller and smaller pieces but perhaps always remain in some form or other.  Physical breakdown of large plastic items to smaller and smaller pieces (collectively termed ‘microplastics’) is a particularly insidious problem, given the largely unknown implications for pollution of food chains.  Marine animals accidentally ingest some of the microplastics, which can fill the stomach and lead to death by starvation, and there is also the potential to affect higher trophic levels.  18 years after they were washed overboard and released to the ocean, some of the Lego pieces are washing up on beaches in Cornwall and farther afield in good condition.  But given 180 years, 1800 years, 18000 years or longer, into how many bits will these nearly 5 million Lego pieces fragment?

‘The Fractured Pebble’: 2014 in review

The following is not my doing, but apparently is all thanks to the ‘helper monkeys’ at  About 1100 views in 2014: for a new born blog, I think this is not bad, regardless of whether this does or doesn’t include my own views when posting and doing edits. Thanks to all those that have viewed and commented so far: more are welcome! The title for the blog (‘The Fractured Pebble’) is a late 2014 invention. I’ll try and keep posting in 2015 ….

The stats helper monkeys prepared a 2014 annual report for this blog.

Here’s an excerpt:

A San Francisco cable car holds 60 people. This blog was viewed about 1,100 times in 2014. If it were a cable car, it would take about 18 trips to carry that many people.

Click here to see the complete report.